Home

Pesticide Science

General Info Pesticide Science

The Laboratory of Pesticide Science of the Agricultural University of Athens (AUA) was founded in 1989 and it is one out of the eleven Laboratories of the Department of Crop Science of the AUA and one out of the five Laboratories of the Crop Protection and Environment Sector. The Laboratory is hosted at the fist floor of "Triantafillides" Building at the northeast side of the Campus (close to the main entrance) in an area of approximately 300 sq.m. and at the ground floor and the basement of the new building beside the arboretum (approx. 200 sq.m.).

The mission of the Laboratory of Pesticide Science is the teaching at undergraduate and post-graduate levels and the execution of research in a variety of modern topics of Pesticide Science and Crop Protection:

  • chemical crop protection
  • study of the mode(s)-of action (MoA) of pesticides
  • isolation, study, and identification of bioctive compounds of natural origin (natural products)
  • pesticide and mycotoxin residue analysis in food and the environment
  • study of the fate of pesticides in the environment
  • toxicological and eco-toxicological risk assessment of pesticides
  • biochemical, genetic, and molecular investigation of pest and pathogen resistance  to pesticides
  • development of metabolomics for the study of pesticides. 

The Laboratory is hosted in a modern and fully-equipped space, with infrastructure capable to support advance research. The chromatographic analytical facilities include a LC/MS system equipped with a quadrupole mass selective detector (MSD) configured for using ESI and APCI ionization modes; 3 HPLC systems equipped with fluorescence detector (FLD) and photo-diode array detector (DAD), 2 GC with a numbers of detectors (ECD, NPD, FID) and 1 GC/MS operated in electron impact ionization (EI) mode and two spectrophotometers UV/Vis. The biochemistry and molecular equipment include a MJ Research PTC200 thermal cycler with dual 48-well block, thermo horizontal electrophoresis gel systems, appropriate electrophoresis documentation and analysis system and an ultra low temperature laboratory Freezer (-86°C). There is also available an array of modern laboratory equipment including general purpose and orbital shaking and standing incubators for microbiological studies, shakers, solid-phase extraction manifolds, growth chambers for in vivo experiments, laboratory Freezer (-20°C), laminar airflow workbenches, autoclaves, rotary evaporators, water baths, sonicators, analytical balances, ovens, centrifuges, ultrapure water purification system and water distillation equipment. The laboratory facilities and equipment are important elements for a successful accomplishment of the major goals of the research project and will be provided to the project members, under the guidance and training of the experienced laboratory staff. Additional research and instructive work is provided in an experimental greenhouse for the establishment of in planta experiments.

Research interests: Pesticide effectiveness and biochemical mechanisms of pesticide activity. Biochemical, genetic and molecular research on the resistance of plant pathogens to fungicides. Pesticide resistance risk assessment of plant pathogens in the field. Development and implementation of molecular resistance diagnosis. Fungicide application and mycotoxin production by mycotoxigenic fungal species. Development and validation of analytical methods for mycotoxin determination in food and feed. Isolation and characterization of natural bioactive substances. Structure - effectiveness relations of bio-active substances. Use of micro-arrays for the identification of molecular targets and the development of pesticides. Development and validation of analytical methods for the determination of pesticide residues in agricultural products. Development of biotechnological methods for pesticide residues analysis. Environmental behavior of pesticides. Pesticide biodegradation. Pesticide in integrated pest management.

A large number of nationally and internationally-funded research projects has been executed by the Staff of the Laboratory. It collaborates with many Laboratories of the AUA, Laboratories of other research institutions in Greece (AUTH, NSCR Demokritos, Benaki Phytopathological Institute, University of Crete, University of Thessaly etc) and others abroad. Staff of the Laboratory participate in national and international conferences, they have published a vast number of research papers in international Journals, which have received significant recognition by the scientific community.

Also, the Laboratory participates and supports research activities of other labs of the AUA as well as those of other Universities and Institutions in Greece and abroad. 

+30 2105294546
+30 2105294514
vontas@aua.gr
+30 2105294543
+30 2105294514
bmic7fof@aua.gr
+30 2105294546
+30 null
konstantinos.aliferis@aua.gr
+30 2105294542
+30 2105294514
gpaziotou@aua.gr
Course name Credits Undergrad/Postgrad Compulsory/Elective
Special Topics of Pesticide Science Postgrad Elective
Pesticide Residues in the Food and the Environment Postgrad Elective
Pestiside Science 5 Undergrad Compulsory
Chemical Crop Protection 5 Undergrad Compulsory

Research Pesticide Science

 

Pesticide effectiveness and biochemical mechanisms of pesticise activity.

Biochemical, genetic and molecular research on the resistance of plant pathogens to fungicides.

Pesticide resistance risk assessment of plant pathogens in the field.

Development and implementation of molecular resistance diagnosis.

Insecticide resistance analysis of mosquitoes.

Fungicide application and mycotoxin production by mycotoxigenic fungal species.

Development and validation of analytical methods for mycotoxin determination in food and feed.

Isolation and characterization of natural bioactive substances.

Structure - effectiveness relations of bio-active substances.

Use of micro-arrays for the identification of molecular targets and the development of pesticides.

Development and validation of analytical methods for the determination of pesticide residues in agricultural products.

Development of biotechnological methods for pesticide residues analysis.

Environmental behavior of pesticides.

Pesticide biodegradation.

Pesticide in integrated pest management.

Effects of fungicides on wine-making yest.

Selected Publications of Pesticide Science Laboratory

  • Ingham VA, Anthousi A, Douris V, Harding NJ, Lycett G, Morris M, Vontas J, Ranson H. (2020) A sensory appendage protein protects malaria vectors from pyrethroids. NATURE 577(7790):376-380. DOI: 10.1038/s41586-019-1864-1. PMID: 31875852
  • Van Leeuwen T, Dermauw W, Mavridis K, Vontas J. (2020) Significance and interpretation of molecular diagnostics for insecticide resistance management of agricultural pests. Curr Opin Insect Sci. 39:69-76. DOI: 10.1016/j.cois.2020.03.006. PMID: 32361620
  • Bryon A, Kurlovs AH, Dermauw W, Greenhalgh R, Riga M, Grbić M, Tirry L, Osakabe M, Vontas J, Clark RM, Van Leeuwen T.(2017) Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in Tetranychus urticaePNAS. 114(29): E5871-5880. DOI:10.1073/pnas.1706865114PMID: 28674017
  • E. Fotopoulou, M. Lykogianni, E. Papadimitriou, S. Mavrikou, K. Machera, S. Kintzios, D. Thomaidou*, Κ.Α. Aliferis*, 2020. Mining the effect of the neonicotinoids imidacloprid and clothianidin on the chemical homeostasis and energy equilibrium of primary mouse neural stem/progenitor cells using metabolomics. Pesticide Biochemistry and Physiology. doi: https://doi.org/10.1016/j.pestbp.2020.104617
  • Vontas J, Grigoraki L, Morgan J, Tsakireli D, Fuseini G, Segura L, Niemczura de Carvahlo J, Nguema R, Weetman D, Slotman MA, Hemingway J. (2018) Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities. PNAS. 115(18):4619-4624. DOI:10.1073/pnas.1719663115. PMID: 29674455
  • Kolainis S.I., Koletti A., Lykogianni M., Karamanou D., Gkizi D., Tjamos S.E., Paraskeuopoulos A., Aliferis K.A.*, 2020. An integrated approach to improve plant protection against olive anthracnose caused by the Colletotrichum acutatum species complex. PLoS One. doi: https://doi.org/10.1371/journal.pone.0233916
  • Karamanou D., Aliferis K.A.*, 2020. The yeast (Saccharomyces cerevisiae) YCF1 vacuole transporter: evidence on its implication into the yeast resistance to flusilazole as revealed by GC/EI/MS metabolomics. Pesticide Biochemistry and Physiology 104475. doi: https://doi.org/10.1016/j.pestbp.2019.09.013
  • Lykogianni M., Papadopoulou E.A., Sapalidis A., Tsiourvas D., Sideratou Z., Aliferis K.A.*, 2020. Metabolomics reveals differential mechanisms of toxicity of hyperbranched poly(ethyleneimine)-derived nanoparticles to the soil-borne fungus Verticillium dahliae Kleb Pesticide Biochemistry and Physiology, 104535. doi: https://doi.org/10.1016/j.pestbp.2020.02.001
  • K.A. Aliferis*, D. Bernard-Perron, 2020. Cannabinomics: application of metabolomics in Cannabis (Cannabis sativa L.) research and development. Frontiers Plant Science. doi: 10.3389/fpls.2020.00554
  • Kostopoulou S., Ntatsi G., Arapis G.*, Aliferis K.A.*, 2020. Assessment of the effects of metribuzin, glyphosate, and their mixtures on the metabolism of the model plant Lemna minor L. applying metabolomics. Chemosphere 239, 124582. doi: https://doi.org/10.1016/j.chemosphere.2019.124582
  • Karamanou, D. A., Aliferis, K.A.*, 2020. Yeast (Saccharomyces cerevisiae) GC/EI/MS metabolomics dataset. Data in Brief, 29, 105208. doi: https://doi.org/10.1016/j.dib.2020.105208
  • Aliferis K.A., 2020. Metabolomics in plant protection product research and development: discovering the mode (s)-of-action and mechanisms of toxicity." In: D. Alvarez-Munoz and M. Farre (Eds.) Environmental Metabolomics Applications in Field and Laboratory Studies, Elsevier Inc., pp. 163-194. Elsevier Inc., doi: https://doi.org/10.1016/B978-0-12-818196-6.12001-1
  • Ntatsi G.*, Aliferis K.A.*, Panagiotopoulou A., Rouphae Y., Savvas D., 2020. 1H NMR metabolic profiling data set of spiny chicory (Cichorium spinosum L.) exposed to exposed to abiotic stresses. Data in Brief. doi: https://doi.org/10.1016/j.dib.2020.105622
  • Kalampokis, I.F., and Aliferis, K.A.*, 2020. Metabolomics in Aspergillus Research: Potential and Applications in Biotechnology, Industry, Medicine, and Crop Protection. in S. Kintzios and S. Mavrikou (Eds), Aflatoxins: Biochemistry, Toxicology, Public Health, Policies and Modern Methods of Analysis. Nova Science Publishers, Hauppauge, NY, U.S.A. doi: https://doi.org/10.1016/B978-0-12-818196-6.00006-6
  • Kostopoulou, S., Ntatsi, G., Arapis, G. and Aliferis, K.A.*, 2019. Original GC/EI/MS total ion chromatograms of Lemna (Lemna minor L.) treated or not with metribuzin, glyphosate, and their binary mixtures. Data in Brief, 27, p.104591. doi: https://doi.org/10.1016/j.dib.2019.104591
  • Kostopoulou, S., Ntatsi, G., Arapis, G. and Aliferis, K.A.*, 2019. Original GC/EI/MS total ion chromatograms of Lemna (Lemna minor L.) treated or not with metribuzin, glyphosate, and their binary mixtures. Data in Brief, 27, p.104591. doi: https://doi.org/10.1016/j.dib.2019.104591
  • Saleh D., Jarry J., Rani M., Aliferis K., Seguin P., Jabaji S., 2019. Diversity, distribution and multi-functional attributes of bacterial communities associated with the rhizosphere and endosphere of timothy (Phleum pratense L.). Journal of Applied Microbiology. doi: https://doi.org/10.1111/jam.14334
  • Sevastos A., Kalampokis I., Panagiotopoulou A., Pelecanou M., Aliferis K.A.*,  2018. Implication of Fusarium graminearum primary metabolism in its resistance to benzimidazole fungicides as revealed by 1H NMR metabolomics. Pesticide Biochemistry and Physiology 148, 50-61. doi: 10.1016/j.pestbp.2018.03.015
  • Kalampokis I., Kapetanakis G., Aliferis K.A.*, Diallinas G.*, 2018. Multiple nucleobase transporters contribute to boscalid sensitivity in Aspergillus nidulans. Fungal Genetics and Biology 115, 52-63. doi: https://doi.org/10.1016/j.fgb.2018.02.004
  • Gagné-Bourque, A. Bertrand, A. Claessens, Aliferis K.A., Jabaji S., 2016. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Frontiers in Plant Science 7, 584. doi: https://doi.org/10.3389/fpls.2016.00584
  • Koidou V, Denecke S, Ioannidis P, Vlatakis I, Livadaras I, Vontas J. (2020) Efficient genome editing in the olive fruit fly, Bactrocera oleae. Insect Mol Biol. 39(10):697-706. DOI:10.1111/imb.12640. PMID: 32141659
  • Samantsidis G-R, PanteleriR, Denecke S, Kounadi S, Christou I, Nauen R,Douris V, Vontas J. (2020) What I cannot create,I do not understand’: functionally validated synergism of metabolic and targetsite insecticide resistance. Proc. R. Soc. B 287:20200838. http://dx.doi.org/ 10.1098/ rspb.2020.0838
  • Singh KS, Troczka BJ, Duarte A, Balabanidou V, Trissi N, Carabajal Paladino LZ, Nguyen P, Zimmer CT, Papapostolou KM, Randall E, Lueke B, Marec F, Mazzoni E, Williamson MS, Hayward A, Nauen R, Vontas J, Bass C. (2020) The genetic architecture of a host shift: An adaptive walk protected an aphid and its endosymbiont from plant chemical defenses. SCIENCE Adv. 6(19): eaba1070. DOI: 10.1126/sciadv.aba1070
  • Fotakis EA, Giantsis IA, Castells Sierra J, Tanti F, Balaska S, Mavridis K, Kourtidis S, Vontas J, Chaskopoulou A. (2020) Population dynamics, pathogen detection and insecticide resistance of mosquito and sand fly in refugee camps, Greece. Infect Dis. Poverty. 9(1):30. DOI: 10.1186/s40249-020-0635-4. PMID:32183909
  • Katsavou Ε, Vlogiannitis S, Karp-Tatham E, Blake DP, Ilias A, Strube C, Kioulos I, Dermauw W, Van Leeuwen T, Vontas J. (2020) Identification and geographical distribution of pyrethroid resistance mutations in the poultry red mite Dermanyssus gallinae. Pest Manag Sci. 76(1):125-133. DOI:10.1002/ps.5582. PMID:31400055
  • Riga M, Denecke S, Livadaras I, Geibel S, Nauen R, Vontas J. (2020) Development of efficient RNAi in Nezara viridula for use in insecticide target discovery. Arch Insect Biochem Physiol. 103(3):e21650. DOI: 10.1002/arch.21650. PMID: 31833096
  • Balabanidou V, Kefi M, Aivaliotis M, Koidou V, Girotti JR, Mijailovsky SJ, Juárez MP, Papadogiorgaki E, Chalepakis G,  Kampouraki A,  Nikolaou C, Ranson H, Vontas J. (2019) Mosquitoes cloak their legs to resist insecticides. Proc R Soc B. 286:20191091. DOI: 10.1098/rspb.2019.1091. PMID: 31311476
  • Tsakireli D, Riga M, Kounadi S, Douris V, Vontas J. (2019) Functional characterization of CYP6A51, a cytochrome P450 associated with pyrethroid resistance in the Mediterranean fruit fly Ceratitis capitata. Pest Biochem Physiol. 157:196-203. DOI:10.1016/j.pestbp.2019.03.022. PMID:31153469
  • Achee NL, Grieco JP, Vatandoost H, Seixas G, Pinto J, Ching-NG L, Martins AJ, Juntarajumnong W, Corbel V, Gouagna C, David JP, Logan JG, Orsborne J, Marois E, Devine GJ, Vontas J (2019) Alternative strategies for mosquito-borne arbovirus control. PLoS Negl Trop Dis. 13(1): e0006822. DOI:10.1371/journal.pntd.0006822. PMID: 30605475
  • Vontas J, Mavridis K. (2019) Vector population monitoring tools for insecticide resistance management: Myth or fact? Pest Biochem Physiol. 161:54-60. DOI:10.1016/j.pestbp.2019.08.005. PMID: 31685197
  • Kampouraki A, Stavrakaki M, Karataraki A, Katsikogiannis G, Pitika E, Varikou K, Vlachaki A, Chrysargyris A, Malandraki E, Sidiropoulos N, Paraskevopoulos A, Gilpathi D, Roditakis E, Vontas J. (2018) Recent evolution and operational impact of insecticide resistance in olive fruit fly Bactrocera oleae populations from Greece. J Pest Sci. 91:1-11. DOI:10.1007/s10340-018-1007-8.
  • Fotakis EA, Giantsis IA, Demir S, Vontas JG, Chaskopoulou A. (2018) Detection of pyrethroid resistance mutations in the major leishmaniasis vector Phlebotomus papatasi. J Med. Entomol. 55(5): 1225-1230. DOI:10.1093/jme/tjy066. PMID: 29912381
  • Kefi M, Mavridis K, Simões ML, Dimopoulos G, Siden-Kiamos I, Vontas J. (2018) New rapid one-step PCR diagnostic assay for Plasmodium falciparum infective mosquitoes. Sci Rep. 8(1):1462. DOI:10.1038/s41598-018-19780-6. PMID: 29362379
  • Douris V, Steinbach D, Panteleri R, Livadaras I, Pickett JA, Van Leeuwen T, Nauen R, Vontas J. (2016) Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis. PNAS. 113(51):14692–14697. DOI:10.1073/pnas.1618258113. PMID:27930336
  • Balabanidou V, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C, Juarez MP, Mijailovsky SJ, Chalepakis G, Anthousi A, Lynd A, Antoine S, Hemingway J, Ranson H, Lycett GJ, Vontas J. (2016) Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. PNAS. 113(33):9268-9273. DOI: 10.1073/pnas.1608295113 PMID: 27439866.
  • Neafsey DE, Waterhouse RM, Abai MR, ...Vontas J,..., Zwiebel L, Besansky N. (2015) Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes. SCIENCE 347 (6217):1258522 DOI: 10.1126/science.1258522. PMID: 2555479

Projects of Pesticide Science Laboratory

 

Funding

Title

Time

Role

Budget (€)

SYNGENTA

Fundamental insect p450 expression and 
characterisation

2020-2022

Project Coordinator

Total: 600,000

Vontas Lab:

600,000

SuperPests HORIZON 

(SFS-17-2017)

Innovations in plant protection  Innovative tools for rational control of the most difficult-to-manage pests (“super pests”) and the diseases they transmit

2018-2021

Project Coordinator

Total: 3,100,000

Vontas Lab:

400,000

Public Investments Program (PIP), GSRT

Emblematic Αctions (olives, grapes, bees).

2019-2021

Project Coordinator (olives)/partner

Total 800,000

VontasLab

70,000

EU HORIZON 2020 (GA731060)

Research capacity for the Implementation of Genetic Control of Mosquitoes (INFRAVEC2)

2016-2020

Project partner

(Vernick)

Total: 10,000,000

Vontas Lab:

580,000

PRIMA (H2020)

VEG-ADAPT: Adapting Mediterranean vegetable crops to climate change-induced multiple stress

2019-2021

Associate

2.8 million €

Operational Programme Competitivenes, Entrepreneurship and Innovation 2014-2020 (EPAnEK)

 

ΟΠΣ 5002803

PLANTUP: Upgrading the Plant Capital.

 

2014-2020

Co-PI

3.2 million €

HORIZON 2020

EU: 727929

TOMRES-A novel and integrated approach to increase multiple and combined stress tolerance in plants using tomato as a model

2017-2021

Associate

5.99 million €

 

 

Photo Gallery

Contact Us

Laboratory of Pesticide Science,

Agricultural University of Athens Iera Odos 75,

118 55, Athens, Greece

 

Email 

gpaziotou[at]aua.gr (Georgia Paziotou)

News